San Mateo Plain Groundwater Basin Assessment

Stakeholder Workshop #8

17 APRIL 2018

COUNTY OF SAN MATEO HEALTH SYSTEM

PRESENTATION OVERVIEW

- Introductions
- Project Overview
- Summary of Analysis Supporting Model Development
- Model Development Activities Phase I and 2
- Phase 3 Scenario Modeling Methods and Results

SAN MATEO PLAIN GROUNDWATER BASIN ASSESSMENT

- Funded through Measure K and Office of Sustainability
- Project Objectives:
 - Increase Public Knowledge
 - Evaluate Hydrogeologic and Groundwater Conditions
 - Evaluate Risk of Undesirable Results
 - Potential Groundwater Management Strategies

http://www.smcsustainability.org/smplain

THE PROJECT IS BEING EXECUTED IN THREE PHASES

4

ON-GOING STAKEHOLDER OUTREACH

- Small group and one-on-one meetings
- Presentations to organizations and governing bodies
- Stakeholder workshops
- New website address: <u>http://www.smcsustainability.org/smplain</u>
- Open Data Portal:

http://data-smcmaps.opendata.arcgis.com/datasets?q= Groundwater&sort_by=relevance

Preliminary Report: <u>http://www.smcsustainability.org/download/energy-</u> water/groundwater/Final-Phase-1-Report.pdf

Workshop #1 –	Workshop #2 –
5/17/2016	9/7/2016
Project Introduction	Basin Conceptual
and Overview	Model
Workshop #3 –	Workshop #4 –
11/21/2016	12/6/2016
Groundwater Flow	Basin Management
Model	Options
Workshop #5 –	Workshop #6 –
1/31/2017	8/17/2017
Phase I Results and	Phase 2 Progress and
Report	Phase 3 Planning

Workshop #7 – 11/9/2017 Modeling Activities and SGMA Updates

PHASE 3 SCENARIO MODELING: FOUR SCENARIOS

Baseline + Climate Change

Baseline

- Stepwise approach allows for measurement of <u>incremental</u> effects
- Reflects accumulation of effects and potential local changes to mitigate those effects

6

Baseline + Climate Change + Urban Demand Pumping Increase

Baseline + Climate Change + Urban Demand Pumping Increase + Implementation of Recharge Projects

MODEL DEVELOPMENT AND ANALYSIS

MODEL DEVELOPMENT ACTIVITIES

Phase I	 Development and initial calibration of steady-state model Development of Basin water balance
Phase 2	 Refinement of Basin water balance Update of steady-state model to include dewatering pumping Re-calibration of steady-state model to reflect updated Bay Mud conductivity data (reduced streamflow percolation and dispersed recharge, and increased inflow from bedrock) Upgrade of model from steady-state to transient, including calibration of storage coefficients Development of Basin scenarios
Phase 3	 Constraints analysis to inform use scenarios Calibration of transient model Application of calibrated transient model to simulate hypothetical future Basin scenarios

MODEL DEVELOPMENT ACTIVITIES – PHASE I AND 2

QUANTITATIVE ASSESSMENT OF BASIN CONCEPTUAL MODEL – ACTIVE MODEL GRID (LAYER I)

- Physical Boundaries
- I0 I60 Acre Cell Size
- Water-Levels (Bay/Ocean)
- Specified Inflow (Recharge)
- Specified Outflow (Pumping)

TEMPORAL MODELING APPROACH (AVERAGE 1987-1996 CONDITIONS)

Employed Steady-State approximation:

- Average groundwater conditions represented by median measured water levels in wells.
- Calibrate hydraulic conductivity
- Assess hydraulic consistency of the Basin conceptual model
- Evaluate average annual water balance

PHASE I AND PHASE 2 STEADY-STATE MODEL WATER BUDGET RESULTS

Phase I

SIMULATION TIMELINE

PHASE 2 TRANSIENT MODEL MEASURED AND CALCULATED WATER LEVELS

PHASE 2 TRANSIENT MODEL AVERAGE WATER BUDGET ("HISTORICAL" 1992-2015)

- Seepage to sewer, marsh and riparian ET greater than in steady-state model
- Net subsurface flow beneath Bay decreases to zero

MODEL SCENARIO DEVELOPMENT

- Reflects input from Workshops 6 and 7
- Stepwise approach allows for measurement of incremental effects
- Reflects accumulation of effects and potential local changes to mitigate those effects

Baseline + Climate Change + Urban Demand Pumping Increase + Implementation of Recharge Projects

PHASE 3 SCENARIO MODELING METHODS AND RESULTS

PHASE 3 SCENARIO MODELING: FOUR SCENARIOS

Baseline + Climate Change

Baseline

- Stepwise approach allows for measurement of <u>incremental</u> effects
- Reflects accumulation of effects and potential local changes to mitigate those effects

Baseline + Climate Change + Urban Demand Pumping Increase

Baseline + Climate Change + Urban Demand Pumping Increase + Implementation of Recharge Projects

MODEL LIMITATIONS & CONSIDERATIONS

- Goal is to understand the Basin's sensitivity to changed conditions or management
- The more complex the scenarios, the fewer that can be completed for Phase 3 – selected 4 scenarios
- Focused on changes <u>within</u> the San Mateo Plain Basin only
- <u>Not</u> intended to analyze the impact of any single project or collection of projects (within or outside of Basin)*

*Model will be available to others to use for this purpose, as desired

CONSTRAINTS ANALYSIS

- Refined the evaluation of areas for potential projects:
 - Aquifer Storage and Recovery (ASR)
 - Indirect Potable Reuse (IPR)
 - Stormwater Recharge (LID)
- Used to identify locations where future pumping, distributed recharge, and injection are modeled

COMPARATIVE EVALUATION OF RESULTS

- Hydrographs at Selected Simulated "Observation" Points
- Groundwater Elevation Contours Absolute and Difference Compared to Baseline
- Long-Term Average Water Budget

HYDROGRAPH WELL LOCATIONS

Well	Location in Basin	Screened Interval (ft bgs)
W143	North	Deep: 60 to 180
W279	Central	Shallow: 7 to 20
W167	South, SF Cone	Deep: 80 to 180
W296	South, near Bay shore	Deep: 164 to 184

SCENARIO I: BASELINE

Hydrology (rainfall and ET)	1991 – 2015 (repeated)
Land and Water Use	Based on 2015 conditions
Average Dispersed Recharge and Bedrock Recharge	5,300 AFY (repeat of 1991 – 2015)
Stream Percolation	I,100 AFY (repeat of 1991 – 2015)
Average Specified Groundwater Pumping (in Basin)	2,500 AFY (average from 2011-2015); slightly greater than 1991 – 2015 average

- Shallow Zone (Layers 1, 2)
 - Flow generally towards Bay
 - Some outflow to north and inflow from south
- Deep Zone (Layers 3, 4, 5)
 - Flow towards pumping centers
 - Some inflow from east and outflow to south
 - Water levels in majority of Basin above sea level

	Historical Period	Projected Future Scenarios			
	(WY 1992-2015)	Scenario I	Scenario 2	Scenario 3	Scenario 4
	Inflows	(AFY)	•		
Dispersed Recharge	4,700	4,700	4 700	4 700	4,900
Stream Percolation			Decrea	sed inflow from	
San Francisquito Creek	400	400	Santa	Clara Subbasin	400
San Mateo Creek	200	200	rolativo	to "Historical"	200
Other creeks	500	500	Telative		500
Bedrock Inflow	600	600		period	600
Injection	0	0		0	1,800
Inflow from the South (from Santa Clara Subbasin)	1,100	300 🦯	Increas	ed inflow from	100
Inflow from the East (beneath San Francisco Bay)	0	800	Ben	eath the Bay	400
TOTAL INFLOWS	S 7,500	7,500	>,000	0,100	8,800
	Outflow	s (AFY)			
Wells	2,700	2,500	Decreas	ed pumping and	4,500
Dewatering	1,000	900 _	de de	ewatering	1,000
Groundwater Seepage					
Riparian ET, Creeks and Tidal Wetlands	2,500	2,600			
Sewers	I,400	1,300			
San Francisco Bay	0	0			
Outflow to the East (beneath San Francisco Bay)	0	0			
Outflow to the North (to Westside Basin)	100	200	200	100	200
TOTAL OUTFLOWS	S 7,700	7,500	7,000	8,400	9,000
STORAGE CHANGI	-200	-100	0	-200	-100

HISTORICAL AND BASELINE MODEL RESULTS

SCENARIO 2: BASELINE + CLIMATE CHANGE

Hydrology (rainfall and ET)	 1991 – 2015, modified to include 2026-2050 estimated climate change: Rainfall increase 4% Reference Evapotranspiration increase 3%
Land and Water Use	Based on 2015 conditions, modified to account for Sea Level Rise Sea Level increase 8.5 ± 3 inches by 2040
Average Dispersed Recharge and Bedrock Recharge	
Stream Percolation	
Average Specified Groundwater Pumping (in Basin)	

MODELING CONDITIONS WITH SEA LEVEL RISE (2040)

- Estimated model areas inundated by projected 8.5 inch sea level rise by 2040 (California Ocean Protection Council, 2013, State of California Sea-Level Rise Guidance Document.)
- Converted model cells from "Drain" boundary condition to "General Head" boundary condition

SCENARIO 2: BASELINE + CLIMATE CHANGE

Hydrology (rainfall and ET)	 1991 – 2015, modified to include 2026-2050 estimated climate change: Rainfall increase 4% Reference Evapotranspiration increase 3%
Land and Water Use	Based on 2015 conditions, modified to account for Sea Level Rise Sea Level increase 8.5 ± 3 inches by 2040
Average Dispersed Recharge and Bedrock Recharge	5,300 AFY (repeat of 1991 – 2015); revised using updated Hydrology – effect was negligible
Stream Percolation	I,100 AFY (repeat of 1991 – 2015); revised using updated runoff – effect was negligible
Average Specified Groundwater Pumping (in Basin)	

MODEL-CALCULATED STREAM FLOWS

HISTORICAL AND PROJECTED NET RECHARGE WITH CLIMATE CHANGE

SCENARIO 2: BASELINE + CLIMATE CHANGE

Hydrology (rainfall and ET)	 1991 – 2015, modified to include 2026-2050 estimated climate change: Rainfall increase 4% Reference Evapotranspiration increase 3%
Land and Water Use	Based on 2015 conditions, modified to account for Sea Level Rise Sea Level increase 8.5 ± 3 inches by 2040
Average Dispersed Recharge and Bedrock Recharge	5,300 AFY (repeat of 1991 – 2015); revised using updated Hydrology – effect was negligible
Stream Percolation	I,100 AFY (repeat of 1991 – 2015); revised using updated runoff – effect was negligible
Average Specified Groundwater Pumping (in Basin)	2,500 AFY (average from 2011-2015); Revised using updated irrigation demand – effect was negligible

Snapshot at end of simulation period (low point)

- Both Shallow and Deep Zones very similar to Scenario I Baseline
- Shallow Zone
 - Flow generally towards Bay
 - Some outflow to north and inflow from south
- Deep Zone
 - Flow towards pumping centers
 - Some inflow from east and outflow to south
 - Water levels in majority of Basin above sea level

Difference Between Baseline (Scenario I) and Scenario 2

	Historical Pariod		Projected Futu	no Sconarios		
		Conneria I		Secondarios	Security A	
	(vv t 1992-2015)	Scenario I	Scenario 2	Scenario 3	Scenario 4	
	Inflows	(AFY)				
Dispersed Recharge	4,700	4,700	4,700			
Stream Percolation				Decreased i	nflow from	
San Francisquito Creek	400	400	400	Decreased		
San Mateo Creek	200	200	200	Santa Clara	a Subbasin	
Other creeks	500	500	500	7 /	500	
Bedrock Inflow	600	600	600	600		
Injection	0	0	0	0		
Inflow from the South (from Santa Clara Subbasin)	1,100	300	100	Decreased inflow from		
Inflow from the East (beneath San Francisco Bay)	0	800	500 🗕 🚽 🚽			
TOTAL INFLOWS	5 7,500	7,500	7,000	beneath the bay		
Outflows (AFY)						
Wells	2,700	2,500	2,500	Decreased seepage		
Dewatering	1,000	900	I,000	from riparian ET,		
Groundwater Seepage				creeks a	nd tidal	
Riparian ET, Creeks and Tidal Wetlands	2,500	2,600	1,300 🦾	creeks, and tidal		
Sewers	I,400	1,300	1,500	wetlands due to		
San Francisco Bay	0	0	500 🥆	change in boundary		
Outflow to the East (beneath San Francisco Bay)	0	0	0	condition and		
Outflow to the North (to Westside Basin)	100	200	200	increased sea level		
TOTAL OUTFLOWS	5 7,700	7,500	7,000	increased sea level		
STORAGE CHANGE	-200	-100	0			
				Increased se	edage to SF	

Increased seepage to SF Bay due to change in boundary condition

<u>SCENARIO 3</u>: BASELINE + CLIMATE CHANGE + URBAN DEMAND PUMPING INCREASE

Hydrology (rainfall and ET)	1991 – 2015, modified to include 2026-2050 estimated climate change: Same as Scenario 2
Land and Water Use	Based on 2015 conditions, modified to account for Sea Level Rise Same as Scenario 2
Stream Percolation	I,100 AFY (repeat of 1991 – 2015); Same as Scenario 2
Average Specified Groundwater Pumping (in Basin)	4,500 AFY (average from 2011-2015); Increased Deep Zone pumping by 2,000 AFY to reflect potential increased demand
Average Dispersed Recharge and Bedrock Recharge	5,300 AFY (repeat of 1991 – 2015); Revised based on increase specified urban pumping; effect is negligible (less than 100 AFY increase)

CONSTRAINTS ANALYSIS TO EVALUATE POTENTIAL INCREASED GROUNDWATER PUMPING AREAS

- Areas where pumping could potentially increase:
 - Combined thickness of model layers 3-5 > 100 ft
 - Fraction of coarse-grained material > 40% in at least one layer
 - Minimum 500 ft from open contamination site
 - Minimum 1 mile from existing or projected Bayshore
- 2,000 AFY increase in extraction rate in Basin relative to Baseline

MODELING POTENTIAL INCREASED GROUNDWATER DEVELOPMENT

- 2,000 AFY increase groundwater production within the Basin
- Distributed into northern and southern portions of Basin
 - North: approx. 30% or 600 AFY
 - South: approx. 70% or 1,400 AFY
- Minimum 1,500 ft separation between extraction wells (existing and new).

CROUNDWATER HYDROFOCUS

Snapshot at end of simulation period

Shallow Zone

- Flow still generally towards Bay
- Some outflow to north and inflow from south

Deep Zone

 Large areas of Basin have Deep Zone water levels less than 0 ft msl

Shallow Zone

Deep Zone

Difference Between Baseline and Scenario 3

42

	Historical Period	Projected Future Scenarios			
	(WY 1992-2015)	Scenario I	Scenario 2	Scenario 3	Scenario 4
	Inflows	(AFY)			-
Dispersed Recharge	4,700	4,700	4,700	4,700	
Stream Percolation		Increased	t inflow from		
San Francisquito Creek	400	Santa Cl	ara Subbasin	400	
San Mateo Creek	200	Santa Ci	ara Subbasiii	200	
Other creeks	500	500	50	500	
Bedrock Inflow	600	Increased	t inflow from	600	
Injection	0	honos	th the hav	0	
Inflow from the South (from Santa Clara Subbasin)	1,100	Denea	in the Day	700	
Inflow from the East (beneath San Francisco Bay)	0	800	500		400
TOTAL INFLOWS	7,500	7,500	7,000	8,100	8,800
	Outflow	s (AFY)			
Wells	2,700	2,500	2,500	4,500	
Dewatering	1,000	Increase	a apromina ba	900	
Groundwater Seepage		Increase	ed pumpage		
Riparian ET, Creeks and Tidal Wetlands	2,500	2,600	1,300	[1,100	
Sewers	I,400	1,300	1,500	1,300	
San Francisco Bay	0	0	500	400	
Outflow to the East (beneath San Francisco Bay)	0	^		0	
Outflow to the North (to Westside Basin)	100	Decreas	ed discharge	100	
TOTAL OUTFLOWS	7,700	from the	shallow zone	8,400	9,000
STORAGE CHANGE -200		via dau		-200	-100
		via dew	atering and		
in .		se	epage		

SCENARIO 4: BASELINE + CLIMATE CHANGE + URBAN DEMAND PUMPING INCREASE + IMPLEMENTATION OF RECHARGE PROJECTS

Hydrology (rainfall and ET)	1991 – 2015, modified to include 2026-2050 estimated climate change: Same as Scenario 2
Land and Water Use	Based on 2015 conditions, modified to account for Sea Level Rise Same as Scenario 2
Stream Percolation	I,100 AFY (repeat of 1991 – 2015); Same as Scenario 2
Average Specified Groundwater Pumping (in Basin)	4,500 AFY (average from 2011-2015); Increased Deep Zone pumping to reflect potential increased demand; Same as Scenario 3
Average Dispersed Recharge, Bedrock Recharge and Injection	7,300 AFY (repeat of 1991 – 2015); Increased dispersed recharge by 200 AFY to reflect potential LID; Added 1,800 AFY of injection to reflect potential IPR

GROUNDWATER

CONSTRAINTS ANALYSIS TO EVALUATE POTENTIAL STORMWATER RECHARGE (LID)

- Areas where Stormwater Recharge are likely to be most effective:
 - Exclude soils identified as hydrologic soils group C or D (slow to very slow infiltration rates).
 - Slope < 5%
 - Non-existent or thin shallow confining layer
 - Minimum 500 ft from open contamination site
- Simulated 200 AFY additional recharge from LID

CONSTRAINTS ANALYSIS TO EVALUATE POTENTIAL INDIRECT POTABLE REUSE (IPR) AREAS

- Areas where IPR is likely to be most effective:
 - Combined thickness of model layers 3-5 > 100 ft
 - Fraction of coarse-grained material > 40% in at least one layer
 - Minimum 1,000 ft from public supply or large irrigation well
 - Minimum 500 ft from open contamination site
 - Minimum 1 mile from existing bayshore
- 1,800 AFY Injection Rate

Snapshot at end of simulation period

- Shallow Zone
 - Similar flow directions as Scenario 3
- Deep Zone
 - Drawdown from pumping partially mitigated by recharge from IPR
 - Smaller area of groundwater levels less than 0 ft msl

Deep Zone

Difference Between Baseline and Scenario 4

Difference Between Scenario 3 and Scenario 4

	Historical Period	Projected Future Scenarios				
	(WY 1992-2015)	Scenario I	Scenario 2	Scenario 3	Scenario 4	
Inflows (AFY)						
Dispersed Recharge	4,700	4,700	4,700	4,700	4,900	
Stream Percolation			Increased			
San Francisquito Creek	400		increased	400	400	
San Mateo Creek	200	Disperse	ed Recharge (LIL	200	200	
Other creeks	500	500	500	500	500	
Bedrock Inflow	600	Incre	ased Recharge	600	600	
Injection	0	From	Injection (IPR)		1,800	
Inflow from the South (from Santa Clara Subbasin)	1,100	500		700	[100	
Inflow from the East (beneath San Francisco Bay)	0	800	500	1,000	400	
TOTAL INFLOW	S 7,500	Decrea	ased Inflow from		8,800	
Outflows (Al Sonto Clara Subbasin and						
Wells	2,700	Santa C		4,500	4,500	
Dewatering	1,000	from l	beneath the bay	900	1,000	
Groundwater Seepage						
Riparian ET, Creeks and Tidal Wetlands	2,500	2,600	1,300	1,100	[1,300	
Sewers	I,400	1,300	1,500	1,300	1,500	
San Francisco Bay	0	0	500	400	500	
Outflow to the East (beneath San Francisco Bay)	0	Increased discharge from		n	0	
Outflow to the North (to Westside Basin)	100	the		100	200	
TOTAL OUTFLOW	S 7,700	the shallow zone via		8,400	9,000	
STORAGE CHANG	E -200		seepage	-200	-100	

OVERALL WATER BUDGET CONCLUSIONS

- Model predicts generally balanced inflows and outflows for all scenarios (avg. change in storage less than 200 AFY; ~2% of total inflows)
- Different boundary conditions (SLR) and stresses (pumping, injection) lead to changes in Basin "throughput"

GROUNDWATER FLOW ACROSS BASIN BOUNDARIES

- Most groundwater exchange with adjacent basins occurs through Shallow Zone (model Layers 1 & 2)
- Climate change (Scenario 2) results in less inflow
- About 1/2 of increased pumping (Scenario 3 vs. 2) comes from inflow from adjacent basins
- About 70% of increased recharge (Scenario 4 vs. 3) goes to outflow to adjacent basins

OVERALL SCENARIO MODELING CONCLUSIONS

- Projected climate change:
 - Minimal influence on groundwater recharge
 - Sea level rise was most influential on groundwater levels and the Basin water budget
- Increased groundwater use (pumping increases) are expected to increase subsurface inflow from Santa Clara Subbasin and from beneath San Francisco Bay
- Increased recharge partially mitigates drawdown from increased pumping
 - Low Impact Development (LID) likely provides modest increase in groundwater recharge
 - Greatest offset to pumping obtained by groundwater injection (IPR)

CALIFORNIA STATE GROUNDWATER ELEVATION MONITORING (CASGEM)

- Developed by Department of Water Resources in 2009
- Established a permanent, locally-managed program of regular monitoring to track seasonal and long term trends in groundwater elevations
- Voluntary, but ...

CASGEM BENEFITS

- Makes the groundwater elevation information available publicly
- If no monitoring entity, local agencies ineligible for certain state (DWR) funding
 - Enforcement of this has been focused on higher priority basins

CASGEM PRIORITIZATION

- Basins ranked on population and growth, size, # wells and types, groundwater reliance, and other factors
- San Mateo Plain Subbasin was designated as 'Very Low' priority in 2014

CASGEM PRIORITIZATION

- Groundwater usage less than 2,000 AFY
 - Default score of 0 overall
- Would have been 'Medium' priority otherwise
- DWR is updating the CASGEM basin prioritizations in 2018
- Basin may be re-designated

PARTICIPATING AGENCIES CONTRIBUTIONS

- Access to wells
- Staff time collecting and compiling data
- Coordinating with partners and DWR
- Uploading data through portal

UPCOMING ACTIVITIES

- Working with BAWSCA and other agencies to explore development of CASGEM-compliant groundwater monitoring well network
- Prepare Phase 3, Final Report
 - Report will reflect data collected and aggregated by January 2018
- Final Stakeholder Workshop Anticipated June 2018

QUESTIONS?

